
TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD. 

MIXED STRATEGIES 

FOR THE INTERCEPTION OF 

BLIND" HIGHLY MANEUVERING TARGETS 

AFOSR Contract No. F61708-97-C0004 

Annual Technical Report 
covering the period of 1 September 1998-31 March 2000 

Principal Investigator:     Josef Shinar, Professor 
Investigator: Tal Shima, Graduate Student 

DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited 

Faculty of Aerospace Engineering, 
Technion, Israel Institute of Technology, Haifa, Israel. 

20000913 062 



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 1 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE | 3. REPORT TYPE AND DATES COVERED 

28-April-2000 Final Report 

4. TITLE AND SUBTITLE 

Mixed Strategies for the Interception of 'Blind' Highly Maneuvering Targets 

6. AUTHOR(S) 

Professor Josef Shinar 

5. FUNDING NUMBERS 

F6170897C0004 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Technion - Israel Institute of Science and Technology 
Technion City 
Haifa 32 000 
Israel 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

N/A 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

EOARD 
PSC 802 BOX 14 
FPO 09499-0200 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

SPC 97-4071 

11.   SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

A 

13. ABSTRACT (Maximum 200 words) 

This report results from a contract tasking Technion - Israel Institute of Science and Technology as follows: The contractor will validate 
previously developed strategies in a realistic three-dimensional variable speed environment. Analytical results will be compared with the 
results of 3-D nonlinear point-mass simulation. The validation will take place in three different scenarios as described in the proposal. 

14. SUBJECT TERMS 

EOARD, Mathematics, Missile Technology 

15.    NUMBER OF PAGES 

34 
16. PRICE CODE 

N/A 
17. SECURITY CLASSIFICATION 

OF REPORT 

UNCLASSIFIED 

18.   SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19, SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. 239-18 
298-102 



TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD. 

MIXED STRATEGIES 

FOR THE INTERCEPTION OF 

"BLIND" HIGHLY MANEUVERING TARGETS 

AFOSR Contract No. F61708-97-C0004 

Annual Technical Report 
covering the period of 1 September 1998 - 31 March 2000 

Principal Investigator:     Josef Shinar, Professor 
Investigator: Tal Shima, Graduate Student 

Faculty of Aerospace Engineering, 
Technion, Israel Institute of Technology, Haifa, Israel. 

This report reflects the opinions and the recommendations of its author. It does not 
necessarily reflect the opinions of the Technion, Israel Institute of Technology, or of 
the Technion R&D Foundation, LTD. The Technion R&D Foundation is not legally 
responsible for the data and the conclusions presented in this report and the report 
does not constitute a directive or a recommendation of the Foundation. 

#Q Foö~ia-dS77 



Table of contents 

Page 

Abstract 1 

Preface 2 

PART 1: TIME-VARYING LINEAR PURSUIT-EVASION GAME MODEL    3 

Notation 4 

Introduction 6 

Problem Formulation 7 

General Game Solution 10 

Validation Study 

Scenario description 16 

TBM model 17 

Interceptor model 17 

Simplified Example 18 

Appendix: Game with Constant Maneuverability and Velocity 20 

PART 2 : SUMMARY OF THE MULTI-YEAR INVESTIGATION 22 

Objectives 23 

Results 23 

Conclusions 24 

References 26 

List of figures 27 



Abstract 

This Annual Technical Report, being the final report on a long-term 
investigation, has two objectives. It describes the technical effort performed in the last 
year and also summarizes the results of the entire (two and half years) investigation 
with an outline of the directions for future research. 

Most missile guidance laws were developed using linearized two-dimensional 
models assuming constant speed and maneuverability. Simulation results demonstrated 
that linear guidance theory, based on such a model, couldn't predict the miss distance 
in an actual real world time-varying missile/target scenario, such as the interception of 
a reentering Tactical Ballistic Missile. 

An earlier Interim Report described the first attempt to extend the linear 
guidance model to include time-varying speed and maneuverability. In this report the 
generalized time-varying linear pursuit-evasion game model is developed. Based on 
this model a modified guidance law with improved homing performance is derived. The 
predictions of the time-varying linear model are validated by simulations of a realistic 
Ballistic Missile Defense scenario. 

Summarizing the more than two years investigation, it can be stated that its 
objective to gain an "understanding how key parameters in the models of the 
interceptor missile and of the target affect the outcome of an engagement" has been 
accomplished at least in a deterministic (noise free) environment. The affects of 
time-varying parameters and nonlinear kinematics were separately analyzed. Extension 
of the investigation to an environment corrupted by measurement noise, having been 
out of the scope of the reported effort from the outset, seems to be the appropriate 
direction for future research. 



Preface 

This Annual Technical Report is in feet the final report on the investigation 
carried out at the Faculty of Aerospace Engineering in the Technion, Israel Institute of 
Technology, Haife under AFOSR Contract No. F61708-97-C0004. The original 
contract was issued for one year starting on 17 August 1997, with an option to extend 
it to a second year. Actually, due to the unforeseen long hospitalization and the 
consecutive gradual return to work of the Principle Investigator, the research activities 
planned for the second year could not be completed in time and the contract was 
further extended until 31 March 2000. 

The objective of the research contract was to the evaluation and development 
of interceptor guidance laws against highly maneuvering autonomous unmanned flying 
vehicles. The effort was aimed at understanding how key parameters in the models of 
the interceptor missile and of the target affect the outcome of an engagement. 

Since the initiation of the research activities under the contract, several 
technical reports were submitted. In the first Interim Report the predictions of earlier 
studies, based on linear guidance theory, were compared to the results of 
three-dimensional point-mass simulations in realistic interception scenarios against 
tactical ballistic missiles. The main conclusions of linear guidance analysis were indeed 
confirmed, but the comparison also identified some discrepancies. The main 
discrepancies between the results of the nonlinear simulations in a realistic environment 
and linear guidance analysis were attributed to the affects of variable speed and 
maneuverability. In the selected anti-ballistic missile defense scenario the affect of 
nonlinear kinematics seemed to be secondary. These results were also presented at the 
AIAA 11th Multinational Conference on Theater Missile Defense, Monterey CA, June 
1998 and the AIAA Guidance, Navigation and Control Conference, Boston, MA, 
August 1998. 

The next report (Annual Technical Report 1998) concentrated on the affects of 
nonlinear kinematics. For this reason a point-defense scenario against highly 
maneuvering cruise missiles was analyzed. These results were presented at the AIAA 
Guidance, Navigation and Control Conference, Portland, OG, August 1999. 

Based on the conclusions reached in the first year, the subsequent effort was 
aimed to extend the frequently used linear model to include known time-varying 
velocities and lateral acceleration bounds of the interceptor and target missiles. In the 
last Interim Report the first results of this effort were presented. 

In this Annual Report the generalized time-varying linear pursuit-evasion game 
model is developed and its predictions are validated by simulations of a realistic 
Ballistic Missile Defense scenario. In addition to the description of this major technical 
effort, the results of the entire (two and half years) investigation effort are summarized 
and directions of some future research are outlined. 



PARTI 

TIME-VARYING LINEAR 
PURSUIT-EVASION GAME MODEL 



Notations 

a acceleration 

A system matrix of the original system (19) 

b ballistic coefficient of the TBM 

B vector of the pursuer's control coefficients in the original system (20) 

B the pursuer's control coefficient in the transformed system (28) 

C vector of the evader's control coefficients in the original system (21) 

C the evader's control coefficient in the transformed system (29) 

CD drag coefficient 

CL lift coefficient 

D constant column vector (25) 

£>0 regular region in the game space 

Z>\ neutral region in the game space 

H Hamiltonian(31) 

J cost function 

m mass 

Ms guaranteed miss distance 

n load factor 

S reference area 

t time 

T thrust 

tgo time to go 

u normalized pursuer control 

V velocity 

v normalized evader control 

Xi state vector components (i = 1,2,... ,6) 

X vector of state variables of the original system (18) 

y distance of lateral separation 

Z zero effort miss distance (26), (61) 

a nondimensional acceleration 

ß nondimensional maneuverability change 

T game dynamics (39) 



s target/interceptor time constant ratio 

♦ aspect angle 

o transition matrix 

0 normalized time to go 

X co-state variable 

A lift-to-drag ratio 

H interceptor/target maneuverability ratio 

a line of sight angle 

T autopilot time constant 

subscripts 

0 initial 

b burning 

c closing 

E evader (target) 

f final 

P pursuer (interceptor) 

s special value 

X longitudinal 

superscripts 

c command 

max maximum 

* optimal 

- normalized 

abbreviations 

BMDO Ballistic Missile Defense Organization 

DGL Differential Game Law 

LOS Line Of Sight 

TBM Tactical Ballistic Missile 



Introduction 

Interceptor missiles (either air-to-air or surface-to-air) were originally designed 
to destroy airplane targets. In spite of the well known feet that such scenario in general 
is characterized by nonlinear kinematics and time-varying velocities, most missile 
guidance laws were developed using linearized two-dimensional models assuming 
constant speed and maneuverability. It turned out that implementation of these 
guidance laws in a realistic environment has been nevertheless successful. The 
discrepancy between the simplified model and the complex reality has been expressed 
by the non-optimality of the guidance solution and the inaccurate prediction of the 
interception outcome. 

In the first Interim Report of this contract, as well as in two subsequent 
conference papers [1, 2], the results derived from linearized guidance theory were 
compared to the outcome of three dimensional point mass simulations of interception 
scenarios against a highly maneuvering tactical ballistic missile (TBM). This 
comparison clearly showed that currently used linear guidance theory cannot predict 
well the miss distance in real world engagements. 

In the scenarios evaluated in this works the interception end-game took place 
between 16-28 km of altitude. A typical velocity profile of the TBM and the 
interceptor are shown in Fig. 1. It can be seen that during the end-game the speed of 
the TBM remains almost unchanged, while the velocity of the interceptor is increasing. 
As a consequence, due to the larger air density in the lower altitudes, the 
maneuverability of the TBM is monotonically increasing. The design of the interceptor 
(carried out by a group of students after the Gulf War) has been aimed to keep the 
maneuverability in the end-game almost constant in spite of the increasing altitude and 
the resulting lower air density. The maneuverability profiles of both missiles are 
depicted in Fig. 2. Based on this data, the differences between the results derived from 
linearized guidance theory and the outcome of three dimensional point mass 
simulations has been attributed to the assumption of constant velocities and constant 
bounds on the lateral accelerations used in the linearized model. Moreover, it was 
found that due to the very high velocities the line of sight rotation, as well as the 
direction change of both missiles, remain small. Thus, the linearization of the 
trajectories with respect to the initial line of sight is a well-justified and valid 
approximation. 

In the open technical literature there are several works that addressed the 
guidance problem of a variable speed missile [3-6]. None of this works proposed a 
model suitable to analyze the above-described TBM interception scenario. Thus, the 
need to develop a new linear time-varying interception model was established. 

In the last Interim Report and a contemporary conference paper [7], the first 
results of this effort, extending the frequently used linear model to include known 
time-varying velocities and lateral acceleration bounds of the interceptor and target 
missiles, were presented. In the first part of this final report the generalized 
time-varying linear pursuit-evasion game model is developed and its predictions are 
validated by simulations of a realistic Ballistic Missile Defense scenario. In this model 



the equations of motion remain linear, but the coefficients became time-varying. As in 
the earlier works [1, 2, 7] the interception scenario of a highly maneuvering TBM is 
formulated as a planar zero-sum pursuit-evasion game (the interceptor missile being 
the pursuer and the TBM the evader). The linear game model allows applying the 
method of "terminal projection", which reduces the dimension of the game dynamics 
and leads to a single state variable (the zero-effort miss distance). The new game 
solution has features similar to the previously used constant speed linear model, such 
as the decomposition of the state space into two regions etc., but the quantitative 
results are substantially different. 

The structure of this part of the report is the following. In the next section the 
new linear time-varying model of the TBM interception is formulated. The general 
solution of this model is presented in the sequel. It is followed by the description of a 
simplified example with time varying target maneuverability and with time varying 
interceptor velocity. In the Appendix the solution of the game model with constant 
maneuverability and velocity [13] is repeated for sake of completeness. 

Problem Formulation 

This report deals with time varying linear pursuit-evasion game models for 
realistic interception scenarios such as an endo-atmospheric interception of a 
maneuverable tactical ballistic missile (TBM). During the end-game of this interception 
scenario the altitude and the velocity of the reentering TBM, as well as of the 
interceptor missile, are continuously varying. Therefore their maneuverability is also 
changing. In this section a linear time-varying mathematical model of such an 
interception end-game is formulated. This planar model is based on the following set of 
assumptions: 

(a-1)     Both missiles can be represented by point-mass models with linear control 
dynamics. 

(a-2)     The relative end-game trajectory can be linearized around a fixed reference line 
such as the initial line of sight. 

(a-3)     The velocity profiles of both missiles on a nominal trajectory are known and can 
be expressed as the function of time. 

(a-4)     The maximum lateral acceleration of each missile is bounded by the maximum 
admissible angle of attack generating the highest available lift coefficient. 

(a-5)     The maneuvering dynamics of both missiles is approximated by first order 
transfer functions. 

(a-6)     The information structure is perfect. 



The assumption of perfect information (a-6) has two parts: (i) the designers of 
both missiles have perfect knowledge of the engagement parameters; (ii) both missiles 
can accurately measure all the state variables. The second part (ii) is the "worst case" 
for the interceptor. In reality the TBM has no information on the interceptor's state 
variables, but it can maneuver randomly and has a non-zero probability to carry out a 
very close realization of the optimal deterministic interception avoidance strategy. 

Typical velocity profiles for both missiles are shown in Fig. 1. Based on these 
profiles and assumption (a-3) the lateral acceleration bound of each missile can be 
computed (see Fig. 2) and expressed as the function of time (or time to go). In Fig. 3 a 
schematic view of the three-dimensional end-game geometry is shown. Note that the 
respective velocity vectors of the missiles are generally not aligned with the reference 
line. The angles <|>p and fa are, however, small. Thus, the approximations cos((j>i) « 1, 
sin(<()i) » (();, G=P,E), are uniformly valid and coherent with (a-2). Nevertheless, the 
longitudinal accelerations of each missile have non-negligible components normal to 
the line of sight. 

Based on (a-2) and (a-3) the final time of the interception can be computed for 
any given initial conditions of the end-game 

tf = arg{Xf=Xo-tJ [Ve(t) + Vp(t)]dt = 0} (1) 
to 

allowing to define the time-to-go by 

tgo = tf -1 (2) 

The state variables in the equations of relative motion normal to the reference line are: 

xi=ye-yP = y (3) 

X2 = y = Ve(t)X6 - Vp(t)x5 (4) 

x3 = aP (5) 

X, = aE (6) 

x5 = <f>P (?) 

* = fe (g) 

The commanded lateral accelerations for each missile, aP
c and aE

c , have 
maximum values that can be expressed as a function of time as ap™* (t) and ae

max (t) 
respectively. From the known velocity profiles VP(t) and VE(t) the respective 
longitudinal accelerations a^t) and a^t) can be computed and substituted into the 
equations of motion 



where 

x, = x2 

X2 = X4 - X3 + axE(t) X6 - axp(t) x5 

x3=(apc-x3)/xp 

x4=(aE
c-X4)/TE 

x5 = x3/VP(t) 

X6=X4A^E(t) 

|ape|^ap""x(t) 

;xx(0) = x°=0 (9) 

;x2(0) = x°2 (10) 

;x3(0) = x° (11) 

;x4(0) = x°4 (12) 

;x5(0) = x° (13) 

;x6(0) = x° (14) 

(15) 

(16) 

This set of equations can be summaräed in a compact form as a linear, time 
dependent, vector differential equation 

with 

X =A(t)X + B(t)u + C(t)v 

T 
X = (Xi, X2, X3, X4, x5, Xe) 

(17) 

(18) 

A(t) = 

0 1 0 0 0 0 

0 0 -1 1 -a^t) axE(t) 

0 0 -1/tp 0 0 0 

0 0 0 -IAE 0 0 

0 0 i/vp(t) 0 0 0 

0 0 0 i/vE(t) 0 0 

(19) 

B(t) = [o   0   a^W/xp    0   0   of 

C(t) = [o   0   0   ar(t)/xE    0   Of 

and the normalized controls 

u = ap7ap
max(t); 

v = aE
c/aE

MX(t); 

u | < 1 

v|<l 

(20) 

(21) 

(22) 

(23) 



The natural cost function of the perfect information game is the miss distance 

J= |DTX(tf)| = |Xl(tf)| (24) 

where 

D=(1,0,0,0,0,0)T (25) 

By using 0(tf, t), the well known transition matrix of the original homogeneous 
system, the transformation of terminal projection is introduced 

Z(t) = DT0(tf,t)X(t) (26) 

The new scalar state variable Z has the physical interpretation of the zero effort 
miss distance and its explicit form is given in the sequel (61). This transformation 
allows reducing the vector equation (17) to a scalar dynamic equation in the form 

Z=JB(tf,t)u + C(tf,t)v (27) 

where 

JB(tf,t) = DTO(tf,t)B(t)<0 (28) 

and 

C(tf, t) = DT 0>(tf, t) C(t) > 0 (29) 

with the cost function of (24) expressed as 

J=|Z(tf)| (30) 

General Game Solution 

Necessary conditions of optimality 

The perfect information linear differential game with bounded controls, 
formulated by equations (27)-(30), is solved in this section in the most general form It 
closely follows the ideas outlined in [9], where this problem was first addressed. 

The Hamiltonian of the game is 

H=Xz[B(tf,t)u + C(tf,t)y] (31) 

where Xz is the co-state variable satisfying 

10 



xz=-dH/dz = o (32) 

Xz(tf) = dJ/dZfc = sign {Z(tf)};          Z(tf) * 0 (33) 

which means that 

Xz(t) = sign{Z(tf)};    Z(tf)*0 (34) 

as long as ^(t) is continuous. This allows determining the optimal strategies as 

u* = arg min H = - sign{£(tf, t) Z(tf)} ;      Z(tf) * 0 (35) 

v* = arg max H= sign{C(tf, t) Z(tf)};        Z(tf) * 0 (36) 

that yield, using (28) and (29) 

u* = v* = sign {Z(tf)> ;        Z(tf) * 0 (37) 

Substituting (37) into (31) yields the optimized game dynamics 

Z* = r(tf,t)sign{Z(tf)};        Z(tf)*0 (38) 

with 

r(tf,t) = [5(tf,t)+C(tf,t)] (39) 

Game solution structure 

Integrating (38) backward from any end condition Z(tf) generates candidate 
optimal trajectories. Several different cases can occur. 

Case 1: r(tf, t) does not change sign {r(tf, t) > 0 V te[to,tf)} 

Two families of monotonic optimal trajectories with opposite signs can be 
generated, filling the entire game space (see Fig. 4). The two trajectory families 
intersect on the Z=0 axis, which serves as a dispersal line, dominated by the evader. In 
this case the optimal strategies (37) can be expressed in a state feedback form 

u* = v* = sign {Z}   V  Z*0 (40) 

and the value of the game is a function of the initial conditions. 

J*(Zo,to) = |Zo|+ j T(tf,t)dt (41) 

An example for this case with a™x (t) < a™ (t) can be found in [8]. 

11 



Case 2: r(tf, t) does not change sign {r(tf, t) = 0 V te [to,tf)} 

The entire game space is filled with optimal trajectories that are actually 
straight lines (see Fig. 5). In this case the optimal strategies (37) in all of the game 
space excluding the Z=0 axis can be expressed in a state feedback form 

u*=v* = sign{Z}   V  Z*0 (42) 

The Z=0 axis is a singular surface separating two regions with different value 
function gradients. On it the optimal evader's strategy is arbitrary while the pursuer has 
to match this strategy. The value of the game in all of the game space is a function of 
the initial conditions. 

J*(Zo,to) = |Zo| (43) 

To the best of the authors' knowledge this case has not been presented in 
works in the open literature. 

Case 3: T(tf, t) does not change sign {T(tf, t) < 0 V te[to,tf)} 

The optimal trajectory pair generated from the point Z(tf)=0 with different 
signs separate the game space into two regions of different solutions (see Fig. 6). 
Outside of these two optimal boundary trajectories, denoted respectively by Z*+ and 
Z*_, there is the region of regular trajectories denoted by Dj where the solution is 
given by (40) and (41). The boundary trajectories themselves belong to D}. Inside the 
other region, defined by 

|Z(t)|<Z*+(t) (44) 

and denoted by Do, the optimal strategies are arbitrary and the value of the game is 
constant. 

Jo*(Zo,to) = 0 (45) 

Inside this region Xz(t), which represents the gradient of the value function, is 
identically zero. Thus, the game space is decomposed into three regions of different 
constant gradients (+1, -1, 0) separated by the two semi-permeable optimal boundary 
trajectories Z*+ and Z*., which are the singular surfaces of the game. 

An example for this case with ap
max (t) > a™ (t) can be found in [8]. 

12 



T(tf,t)<0     te[t0,ts)" 

Case 4: T(tf, t) changes its sign once < T(tf,t) = 0     t = ts 

T(tf,t)>0     te(ts,tf) 

The optimal trajectories have an extremum at t = ts. As a backwards generated 
optimal trajectory intersects the Z=0 axis, it ceases to be optimal because the change in 
sign{Z}. The two families of such trajectories define a dispersal line of the game 
dominated by the evader. The boundary trajectories Z*+ and Z*. are the pair of optimal 
trajectories that reach the Z=0 axis tangentially at t = ts which is the solution of 
T(tf, t) = 0. The two regions of the different game solutions shown in Fig. 7 are 

Di = {(Z,t)| |Z(t)| > Z*+(t) u tf > t > ts} (46) 

D0={(Z,t)||Z(t)|<Z*+(t)nt<ts} (47) 

In Dj equations (40) and (41) provide the game solution. In Do the optimal 
strategies are arbitrary and the value of the game is constant. 

Jo*(Zo,to)= | T(tf,t)dt (48) 

The boundary trajectories and the dispersal line {Z(t)=0 for tf > t > ts}, 
dominated by the evader, belong to Dj. An example for this case can be found in [9]. 

Case 5: T(tf, t) changes its sign once 

T(tf,t)>0     te[t0,ts) 

r(tf,t) = 0     t = ts 

r(tf,t)<o    te(ts,tf) 

The two optimal trajectories generated from the point Z(tf)=0 with different 
signs intersect again on the Z=0 axis at t = tc < ts (assuming tc > t0) and enclose the Do 
region (see Fig. 8). All other optimal trajectory pairs, terminating at different values of 
|Z(tf)| * 0, will also intersect each other on the Z=0 axis at t < tc (if tf is large enough) 
creating an evader dominated dispersal line {Z(t)=0} for tc < t < to. Inside £>„ the 
optimal strategies are arbitrary and the value of the game is zero as given by (45). 
Equation (40) and (41) give the game solution everywhere else (i.e. in V). This case 
was first introduced in [7]. 

Remarks 
1) Other cases, where T(tf, t) changes its sign more than once, can also occur. 

These cases are out of the scope of the present report. 
2) In a game model with constant velocities and constant bounds on the lateral 

acceleration, solved in the Appendix, the conditions for the different cases can be easily 
determined (see Table A-l). 

13 



Explicit computation of Z 

In order to compute T(tf, t) for the present problem, (17)-(25), the zero effort 
miss distance is derived explicitly. Assuming zero controls (11) and (12) yield 

x3(t)=x3(to)   e~*> (49) 

x4(t) = x4(t0)   e'^H (50) 

Substituting (49) and (50) into (13) and (14), respectively, yields 

x5(t)=x5(t0)+x3(t0)lP(t) (51) 

x6(t)=x6(t0)+x4(t0)lE(t) (52) 

where 
-V 

A t p.  /TP 

Ip(t)=J- dC (53) 
P       JVp(t) 

-V 

The integrals (53) and (54) have an analytic form only for very special cases of 
VP(t) and VE(t), respectively. Otherwise they have to be computed numerically. 
Substituting (51) and (52) into (10) yields 

x2(t)=x2(t0)+x3(t0)cp[e"^ -l-np(t)]-x4(t0)tE[e"^ -l-nE(t)]-x5(t0).    (55) 

•[Vp(t)-vP(t0)]+x6(t0)-ryE(t)-vE(t0)] 

where 

IIp(t)=fIp(Qaxp(°dC (56) 
o        tp 

nE(t)=fXEW gwd; 
o t, 

,l)I.(Q«J(Od|; (57) 
0 

and (3) becomes 

14 



x1(t)=x,(t0)+x2(t0>-x3(t0)iI 
e   +X -i+mpW 

+ x4(t0)rI 

- v 
/*E+ t/ _i + mE(t) 

x5(toXlVp(t)-VP(to)t]+x6(t0XlVE(t)-VE(t0)t] 

where 

o    *p 

mB(t)=j5i®d; 
0     *E 

IVp(tWVP(QdC 
o 

ivE(t)i}vE(C)d; 
o 

(58) 

(59) 

(60) 

Thus the zero effort miss distance of the problem is 

Z(t) = x1(t)+x2(t>g0-x3(t)t e ^ +^L-i + nip(tgo) 

+ x4(t)tE e H +_^_i + iiiE(teo) 

+ x6(t0j[lVE(t)-VE(t)tgo] 

-x5(t)[lVP(tgo)-Vp(t)tgo]+      (61> 

After eliminating equal terms, the time derivative of (61) becomes 

dZ 
dt 

= aP
nax(t) e /Tp+ g0/ -i+inP(teo) 

-ar(t) e 8^E+tg0/   -l + IHE(tg0) 

(62) 

Substituting (37) into (62) yields the optimal game dynamics 

dZ* 
dt 

= r(tf5t)-sign(Z)   V  Z*0 (63) 

where 
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r(tf,t) = ar(t) 
t„ 

e xp + V _1 + m (t   } 

Tp 

TP 

■arct) 
to, 

e ^B +!fL_i + niE(t   ) 
TE 

(64) 

*E 

Validation Study 
Scenario description 

In the simulated scenario a single guided interceptor missile is launched against 
a reentering TBM of high maneuverability. This scenario was analyzed in great details 
[1,2] and compared to a simplified linear model. The results ofthat analysis motivated 
the present study. The results presented in this paper were obtained by the simulation 
program and its main features are repeated here for the sake of completeness. 

The simulation program consists of the following elements: three-dimensional 
nonlinear relative kinematics between two point-mass vehicles, point-mass dynamics of 
both flying vehicles, simplified guidance and control dynamics of each vehicle and a 
high-altitude standard atmospheric model. The simulations are carried out in a fixed 
Cartesian coordinate system, assuming flat non-rotating earth and no wind. The 
well-known equations of three-dimensional kinematics and point-mass dynamics of 
atmospheric flying vehicles are summarized in [10] and not repeated here. 

For sake of simplicity a point defense scenario is considered, i.e. the interceptor 
missile is launched from the vicinity of the TOM'S target. The initial position of the 
TBM is determined by assuming a non-maneuvering ballistic trajectory aimed at a fixed 
surface target. The initial position of the TBM also determines the vertical plane of 
reference. When the reentering TBM is detected, the defense system selects the desired 
altitude for interception and launches a guided missile towards the predicted point of 
impact at this altitude. In this study a nominal interception altitude of 22 km is 
selected. The velocity and maximum lateral acceleration profiles along the nominal 
(non-maneuvering) trajectory are plotted in Figs. 1 and 2, respectively. 

The results presented in this report concentrate on the interception end-game, 
where a sequence of "hard" TBM maneuvers is assumed to take place. This end-game 
starts when the TBM crosses the altitude of 28 km and has an approximate duration of 
3 sec. The initial TBM maneuver is commanded to a direction (either right or left) 
perpendicular to the vertical reference plane. The sequence is completed by a second 
maneuver, commanded to the opposite direction, after some time Atswe[0,3.16] sec. 
The values of AW vary between different simulation runs in steps of approximately 
0.25 sec corresponding to steps of 500 m of altitude. 

These type of end-game maneuver sequence were selected because both 
optimal control [11, 12] and differential game [8, 9, 13] theories predict that the 
optimal missile avoidance maneuver (aimed to maximize the miss distance) has such a 

16 



"bang-bang" structure. Moreover, these maneuvers with varying At^, represent 
adequately the ensemble of the random maneuver samples [2] that can be implemented 
by the designer of a TBM without the knowledge of the interception altitude. In the 
next subsections the specific guidance and control models of a maneuvering TBM and 
the interceptor missile are described. 

TBM model 

The reentering TBM is assumed to be a generic cruciform flying vehicle having 
some control surfaces to execute lateral maneuvers up to a given angle of attack cw 
in non-rolling body coordinates. The relationship between the actual angle of attack 
and its commanded value is approximated by a first-order transfer function with a time 
constant tEe[0.01,0.4] sec. The generic TBM used in this study is characterized by its 
ballistic coefficient (b=5000 kg/m2), which determines the deceleration in the 
atmosphere and the lift to drag ratio Ae[1.41,2.83] at the angle of attack generating 
maximum lift. 

Interceptor Model 

The generic interceptor missile (designed by a group of students for high 
endo-atmospheric interception) has an aerodynamically controlled cruciform airframe 
and is assumed to be roll stabilized. It has a two stage solid rocket propulsion. Each 
rocket motor provides a constant thrust. After the "burn out" of the first stage the 
booster is separated and the second rocket motor is ignited. The maneuverability of the 
missile (its lateral acceleration and the corresponding load factor) is limited, in each of 
the two perpendicular planes of the cruciform configuration, by the maximum lift 
coefficient. It is assumed that the missile's auto-pilot can be represented by a 
first-order transfer function with a time constant xPe[0.05, 0.4] sec. The parameters of 
the interceptor are summarized in Table 1. 

Parameter     tfe [sec]       T [kN]      n^ [kg]      m^g]     sCD[m2]    SCLmax [m
2] 

Stage 1 6*5 229.0        1540.0        933.0 57TÖ Ö~24 
Stage 2 13.0 103.0 781.0 236.0 0.05 0.20 

Table 1. Interceptor Data 

The guidance system of the interceptor missile consists of two identical, 
de-coupled channels, associated with the perpendicular planes of the cruciform 
configuration. Since the missile is roll stabilized, one channel is designated to perform 
lateral accelerations in the vertical plane and the other in the direction perpendicular to 
it. An appropriate missile's guidance law generates the acceleration command for each 
channel subject to the saturation imposed by the maximum lift coefficient. In the 
present study two different differential games guidance laws are considered: (i) DGL/1 
- derived using the simplified linear model [2], (ii) DGL/E - derived using the 
presented extended linear model. 
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Simplified Example 

As noted before, the velocity and maneuverability of both missiles during the 
end-game is time-varying. Based on Figs. 2 & 3 two simplifying assumptions can be 
made: 

(SA-1) The interception scenario is between an interceptor with a constant longitudinal 
acceleration [a^t) = a^] and a constant speed reentering TBM [axe(t) = 0]. 

(SA-2) The maneuverability of the interceptor is constant, while that of the evader is 
linearly time varying. 

In the preliminary analysis described in [7] two elementary examples, using 
each of these assumptions separately, were presented. In this example a more realistic 
scenario, where both of these assumptions are simultaneously valid, is analyzed. 

Based on simplifying assumption (SA-1) the pursuer's velocity can be 
expressed as 

Vp(t) = Vpf(l-atg0/xp) (65) 

where Vpf is the pursuer's final velocity and 

a = axpip/Vpf (66) 

Based on (SA-2) the evader's maneuverability can be expressed as 

aE
max(t) = aEf

max[l-ßtg0/Tp] (67) 

The zero effort miss distance of this simplified problem is 

Zaß = Z1 + AZap (68) 

where Z1 is the zero effort miss distance for the constant speed model (see Appendix) 
and 

A Zap =-[inP(tgo)Tp2x3 +0.5a tgo 2Vpf x5/Tp] (69) 

with 

lllp(tg0) = JU      r ^ dCdgdg (70) 
0 _2 1-a — 

The state variables that affect the change of the zero effort miss distance are x3 

(ap) and x5 (<j>p) only. Using the new definition of (68) the optimal strategies of (40) 



become 

ii* = v* = sign {Zaß} 

and the resulting optimal trajectories are 

(71) 

dZ aß 
_r«ß aß> 

where 

dt 

-aß 

= rap(tf,t).sign(Zap) (72) 

rap(tf,t) = a™ xp +_ü_1+nip(-^) Tp- 

-a Ef 
XE +-S2--1 

(73) 

XBO-P-
82

-) 

It can be shown that this function corresponds to case 4. The non vanishing 
solution of the equation r°*= 0 (if it exists) provides (tg0)sap> 0 and the value of the 
game in region Do is 

(tgo)s „ 

Ms
aß= J raßdt (74) 

The affect of the normalized parameters a and ß denned by (66) and (67), on 
the critical time and on the guaranteed normalized miss distance is shown in Figs. 9 and 
10, respectively. 

As can be seen from Fig. 10 the guaranteed miss distance decreases as a 
increases. The reason is that the velocity vector is generally not aligned with the line of 
sight and consequently a positive longitudinal acceleration (a > 0) has a component 
normal to the LOS. This augments the pursuer maneuverability and results in smaller 
miss distances. An increase in ß results also in a decrease in the guaranteed miss 
distance since the effective maneuverability ratio during the end game is smaller than its 
final value used in (67). 

The above outlined extended linear model leads to a substantial improvement in 
the homing accuracy in realistic scenarios with time varying missiles velocities and 
maneuverabilities. This is demonstrated by results of the three-dimensional nonlinear 
simulation shown in Figs. 11 and 12. In Fig. 11 the robust behavior of DGL/E is 
clearly seen. Moreover, the extended linear model provides a much more accurate 
prediction of the miss distance obtained by the three-dimensional nonlinear simulation, 
as shown in Fig. 13. The negligible differences confirm the validity of the model. 
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Appendix: Game with Constant Maneuverability and Velocity 

This game have served as a simplified linearized model for the terminal phase 
of intercepting a maneuvering target by a guided missile [8, 11]. The game solution is 
based on the assumptions that both players have constant velocities and the bounds on 
their lateral accelerations are also constant. Consequently, the pursuer/evader 
maneuverability ratio, defined as 

.. _ „ max / _ max /"A.'H fi, = ap       /aE KA >■) 

is a fixed parameter of the game. It is also assumed that the interception takes place in 
a plane with small deviations from the initial line of sight. The equations of motion are 
written in Cartesian coordinates, where the X axis is aligned with the initial line of 
sight. The assumptions of constant speed and trajectory linearization allow solving the 
equation of motion in the X direction as a function of time-to-go. Therefore, only the 
equations of motion in the Y direction (perpendicular to the initial line of sight) remain 
to be solved. 

If both players have first order dynamics [13], the game (called in the recent 
literature as DGL/1 and its variables will be denoted with the superscript 1) has 4 state 
variables of Eqs. (3-6). The "terminal projection" transformation leads to the definition 
of the zero effort miss distance as 

Z'(t) = xi(t) + x2(t) tgo + AZE(t) - AZp(t) (A-2) 

where 

AZE(t) = TE2 (e^-tf/e-l) X4(t) (A-3) 

AZp(t) = Tp2 (e^+G-l) x3(t) (A-4) 

and 9, s are normalized parameters defined by 

0 = (tf-t)/xp (A-5) 

e = TE / TP (A-6) 

In order to obtain a more general solution the normalized zero effort miss 
distance is defined 

Zr = -^-7 (A-7) max   2 
aE   Tp 

The optimized normalized game dynamics is 

20 



where 

67)_ 
dt 

—l 

. = r1(G,n,e)-fflgn(Z1) 

,-e/e r (G,u,s) = V- [e + © - 1]- 6[e*"+ 9/e -1] 

(A-8) 

(A-9) 

The game space can have 5 different structures depending on the parameters ji 
ands, as shown in Table A-1. 

H<1 u=l |i>l 

U€<1 Case 1 (Fig. 4) Case 1 (Fig. 4) Case 4 (Fig. 7) 

US= 1 Case 1 (Fig. 4) Case 2 (Fig. 5) Case 3 (Fig. 6) 

ue>l Case 5 (Fig. 8) Case 3 (Fig. 6) Case 3 (Fig. 6) 

Table A-l. Conditions for various game solution structutes 

In all of these cases the guaranteed normalized miss distance in region V, 
depends on the initial conditions, as well as on the parameters n and 8. The region V0 

exists only in cases 3-5. The guaranteed normalized miss distance for this entire 
region depends only on the parameters ja and s. 

Ms = u<l- £)(e-e^ +el -1) - [öi-lXOl f ]/2 (A-10) 

where 6^ is the strictly positive solution of the equation r' (9, \i, s) = 0. In case 4 both 

Q1 and Ms are identically zero. 
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PART 2 

SUMMARY 
OF THE MULTI-YEAR INVESTIGATION 
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Objectives 

The objective of the research contract, planned for two years of activity, was 
the evaluation and development of interceptor guidance laws against highly 
maneuvering autonomous unmanned flying vehicles. The effort was aimed at 
understanding how key parameters in the models of the interceptor missile and of the 
target affect the outcome of an engagement. In particular, the following questions 
were addressed: 

a) "Are the conclusions of earlier studies, derived on the basis of a simplified 
linear mathematical model, valid for the real world problem of intercepting highly 
maneuvering autonomous unmanned flying vehicles expected in the future?" 

b) "To what extent can linear guidance theory be used to predict the 
guaranteed miss distance in an actual real world engagement between a guided 
missile and its highly maneuverable target?' 

In order to answer these questions, the investigation effort started with two 
detailed parametric simulation studies. In the first Interim Technical Report the results 
of nonlinear three-dimensional point-mass simulations of a theatre missile defense 
(TMD) scenario were compared to the predictions of linear guidance theory. The 
second Technical Report presented a similar analysis of a cruise missile defense 
scenario, which has very different characteristics. In particular the altitude of the 
interception end-game is constant and the speed variations are generally minor. 

The characteristics of these two scenarios were selected in order to isolate the 
affect of the nonlinear kinematics from those of speed and altitude variations. For the 
sake of having a better insight, measurement noise and the associated estimation 
problem were not included in the simulations. Several guidance laws were compared 
in both studies. For those guidance laws that required explicit knowledge of the target 
acceleration, it was assumed that this information is obtained with a fixed time delay 
representing the convergence time of the (not simulated) estimator. This delay was one 
of the parameters of the investigation. 

Results 

In spite of the great differences between the two simulated scenarios, both 
studies confirmed that the major conclusions of earlier studies, based on linear 
guidance theory, remain valid in a realistic environment: 

1. The currently available guidance laws and estimation techniques cannot 
guarantee a "hit-to-kill" accuracy in the interception of highly maneuvering tactical 
ballistic or cruise missile that are expected in the future. The main reasons for this 
failure are insufficient maneuverability advantage and inherent delay in estimating 
target maneuvers. 
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2. Guidance laws derived using differential game theory provide an unproved 
guaranteed (robust) homing accuracy compared to currently used "modern" guidance 
laws based on optimal control. 

Moreover, the two simulation studies created an enhanced understanding of the 
affects of some key parameters on the outcome of a missile/target engagement and also 
indicated the limitations of the currently existing theory. The sensitivity trends of the 
guaranteed miss distance with respect to the parameters of the interception in a 
realistic environment were found to be similar, but not identical, to the trends 
predicted by a linear model. In spite of the similarity in trends, it was realized that 
currently existing linear guidance theory can not be used to predict the miss distance in 
an actual real world missile/target engagement. A major reason for the differences has 
been identified as the assumptions of the linear model on constant velocities and 
constant lateral acceleration bounds. The affects of nonlinear kinematics in the TMD 
interception scenario were found negligible. 

By isolating the affect of the nonlinear kinematics, it was found that most of the 
discrepancies, associated with the variable speed and maneuverability vanish in the 
cruise missile defense scenario. In the maneuvering end-game of the cruise missile 
defense scenario, characterized by high turning rates, the affect of nonlinear kinematics 
cannot be neglected. The end-game maneuvers executed by both missiles create large 
angular deviations from the initial interception geometry that invalidate the linearized 
kinematical model used for guidance law development. Therefore, it is absolutely 
necessary for an effective guidance, to assure that in the zero effort miss distance 
expressions of the guidance laws the acceleration components normal to the line of 
sight are used, as implied by linear guidance theory. This very important guidance law 
modification is not always implemented in existing missile systems. The same is needed 
for a meaningful comparison between the results of nonlinear and linear simulations. 
The nonlinear simulations confirm that in many cases the maximum miss distance is 
only about 2/3 of the value obtained with linearized kinematics. This is due to the 
reduced lateral acceleration component of the cruise missile normal to the line of sight 
(maximum aspect angle of about 40°). 

Based on these results the direction to be taken in the next phase of the 
investigation was to extend currently used linear guidance models to allow for variable 
speed and maneuverability, in order to yield guidance law modification and improved 
homing accuracy. This effort was successfully completed, as it is described in the first 
part of this report. Moreover, the extended linear guidance model allowed predicting 
the miss distance in an actual, real world, missile/target engagement more accurately. 

Conclusions 

By comparing the objectives and the results of the investigation, as outlined 
above, it can be clearly seen that the objectives were fully reached within the limited 
frame selected from the outset. By restricting the investigation from the outset in noise 
free scenarios, it has been easier to understand how key parameters in the interceptor 
missile and the target models affect the outcome of an engagement. The limitations of 
the frequently used linear guidance theory in a noise free, but otherwise realistic 
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interception scenarios have been identified. The extension of a time-varying model 
within the frame of linear differential game theory has become an important step 
towards the development of a new guidance law for an efficient and satisfactory 
defense against highly maneuvering tactical ballistic or cruise missiles expected in the 
future. The separation between deterministic parameters allowed a very detailed 
parametric sensitivity analysis with an affordable computational effort. 

It has to be admitted, however, that the deterministic analysis (detailed and 
profound, as it could be) does not present the complete picture. It is well known, that 
the accuracy of any guidance system is limited by the errors of the estimation process, 
which is necessary in realistic environment with noise corrupted measurements. In two 
recent works [14, 15] (performed outside the AFOSR sponsored effort) improved 
guidance performance was achieved by proper selection of the estimation process. 
There is another basic issue to be considered in this respect. The common practice in 
guidance system design has been to use the estimated variables of the stochastic 
interception scenario in the perfect information guidance law. This practice is based on 
the assumption that the stochastic guidance problem possesses the certainty 
equivalence property. Moreover, it also assumes that the optimal guidance problem is 
also separable (i.e. that the optimal estimation algorithm does not depend on the 
optimal guidance law and vice versa [16]. Since these assumptions are not valid for 
realistic interception scenarios against randomly maneuvering targets, this approach is 
clearly not optimal in a rigorous sense. It was suggested [17] that for such cases a 
separate design of the estimator is allowed, but the optimization of the control law has 
to be based on the probability density function of the estimated state variables. An 
example in this direction has been analyzed within the frame of a recent BMDO 
contract [18]. In this example the it was demonstrated that for any given estimator the 
delay induced by the non ideal convergence of the estimation process of the target 
maneuver can be compensated, leading to an significant improvement of the 
guaranteed guidance performance. 

The success in deterministic analysis and the recent results dealing with 
estimation indicate the need to integrate these two elements in the development of a 
new approach of interceptor guidance, which takes into account not only time varying 
parameters, but also the limitations of the available estimation techniques. In this 
context, optimizing the estimation process has to be the first step in the overall 
guidance/estimation improvement strategy. These conclusions outline a new, very 
ambitious research effort aimed to achieve an efficient and satisfactory defense against 
highly maneuvering tactical ballistic or cruise missiles expected in the future, 
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